Sunday, August 1, 2010

Viscometer

A viscometer (also called viscosimeter) is an instrument used to measure the viscosity of a fluid. For liquids with viscosities which vary with flow conditions, an instrument called a rheometer is used. Viscometers only measure under one flow condition.

In general, either the fluid remains stationary and an object moves through it, or the object is stationary and the fluid moves past it. The drag caused by relative motion of the fluid and a surface is a measure of the viscosity. The flow conditions must have a sufficiently small value of Reynolds number for there to be laminar flow.

Monoclonal antibodies

Monoclonal antibodies (mAb or moAb) are monospecific antibodies that are the same because they are made by identical immune cells that are all clones of a unique parent cell.

Given almost any substance, it is possible to create monoclonal antibodies that specifically bind to that substance; they can then serve to detect or purify that substance. This has become an important tool in biochemistry, molecular biology and medicine. When used as medications, the non-proprietary drug name ends in -mab (see "Nomenclature of monoclonal antibodies").

Microscope slide

A microscope slide is a thin flat piece of glass, typically 75 by 25 mm (3 by 1 inches) and about 1 mm thick, used to hold objects for examination under a microscope. Typically the object is placed or secured ("mounted") on the slide, and then both are inserted together in the microscope for viewing. This arrangement allows several slide-mounted objects to be quickly inserted and removed from the microscope, labeled, transported, and stored in appropriate slide cases or folders.

Microscope slides are often used together with a cover slip or cover glass, a smaller and thinner sheet of glass that is placed over the specimen. Slides are held in place on the microscope's stage by slide clips or slide clamps

Eastern blotting

Eastern blotting technique is to detect post-translational modification of proteins. Proteins blotted on to the PVDF or nitrocellulose membrane are probed for modifications using specific substrates.

Western blotting

Antibodies to most proteins can be created by injecting small amounts of the protein into an animal such as a mouse, rabbit, sheep, or donkey (polyclonal antibodies)or produced in cell culture (monoclonal antibodies). These antibodies can be used for a variety of analytical and preparative techniques.

In western blotting, proteins are first separated by size, in a thin gel sandwiched between two glass plates in a technique known as SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis). The proteins in the gel are then transferred to a PVDF, nitrocellulose, nylon or other support membrane. This membrane can then be probed with solutions of antibodies. Antibodies that specifically bind to the protein of interest can then be visualized by a variety of techniques, including colored products, chemiluminescence, or autoradiography. Often, the antibodies are labeled with enzymes. When a chemiluminescent substrate is exposed to the enzyme it allows detection. Using western blotting techniques allows not only detection but also quantitative analysis.

Analogous methods to western blotting can be used to directly stain specific proteins in live cells or tissue sections. However, these immunostaining methods, such as FISH, are used more often in cell biology research.

Denaturing gel

A denaturing gel is a type of electrophoresis in which the native structure of macromolecules that are run within the gel is not maintained. For instance, gels used in SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) will unfold and denature the native structure of a protein. In contrast to native gel electrophoresis, quaternary structure cannot be investigated using this method.


Northern blot

The northern blot is a technique used in molecular biology research to study gene expression by detection of RNA (or isolated mRNA) in a sample.

Flow diagram outlining the general procedure for RNA detection by northern blotting.

With northern blotting it is possible to observe cellular control over structure and function by determining the particular gene expression levels during differentiation, morphogenesis, as well as abnormal or diseased conditions. Northern blotting involves the use of electrophoresis to separate RNA samples by size, and detection with a hybridization probe complementary to part of or the entire target sequence. The term 'northern blot' actually refers specifically to the capillary transfer of RNA from the electrophoresis gel to the blotting membrane, however the entire process is commonly referred to as northern blotting. The northern blot technique was developed in 1977 by James Alwine, David Kemp, and George Stark at Stanford University. Northern blotting takes its name from its similarity to the first blotting technique, the Southern blot, named for biologist Edwin Southern. The major difference is that RNA, rather than DNA, is analyzed in the northern blot.

Gene knockout

A gene knockout (abbreviation: KO) is a genetic technique in which an organism is engineered to carry genes that have been made inoperative (have been "knocked out" of the organism). Also known as knockout organisms or simply knockouts, they are used in learning about a gene that has been sequenced, but which has an unknown or incompletely known function. Researchers draw inferences from the difference between the knockout organism and normal individuals.

The term also refers to the process of creating such an organism, as in "knocking out" a gene. The technique is essentially the opposite of a Gene Knock-in. Knockout is often abbreviated as KO. Knocking out two genes simultaneously in an organism is known as a double knockout (DKO). Similarly the terms triple knockout (TKO) and quadruple knockouts (QKO) are used to describe 3 or 4 knocked out genes, respectively.

Transgene

A transgene is a gene or genetic material that has been transferred naturally or by any of a number of genetic engineering techniques from one organism to another.

In its most precise usage, the term transgene describes a segment of DNA containing a gene sequence that has been isolated from one organism and is introduced into a different organism. This non-native segment of DNA may retain the ability to produce RNA or protein in the transgenic organism, or it may alter the normal function of the transgenic organism's genetic code. In general, the DNA is incorporated into the organism's germ line. For example, in higher vertebrates this can be accomplished by injecting the foreign DNA into the nucleus of a fertilized ovum. This technique is routinely used to introduce human disease genes or other genes of interest into strains of laboratory mice to study the function or pathology involved with that particular gene.

In looser usage, transgene can describe any DNA sequence, regardless of whether it contains a gene coding sequence or it has been artificially constructed, which has been introduced into an organism or vector construct in which it was previously not found.

In practical terms, a transgene can be either a cDNA (complementary DNA) segment, which is a copy of mRNA (messenger RNA), or the gene itself residing in its original region of genomic DNA. The difference between these two lies in the fact that the cDNA has been processed to remove introns and also, usually, does not include the regulatory signals that are embedded around and in the gene. The advent of annotated cloned regions of the genome alongside the genome sequence, in particular as large clones in BACs (bacterial artificial chromosomes) or fosmids, and recombineering, which is the method that permits the engineering of these large clones, has changed the practice of transgenesis from its origins with cDNA-based constructs towards the more reliable genomic-based constructs.


Capillary action

Capillary action, or capillarity, refers to certain phenomena associated with the behavior of liquids in thin tubes or in porous materials. Liquids, such as water, will tend to move "up-hill" (against the force of gravity) which does not normally occur in large containers. The interface between liquids, or a liquid and a gas, can form a meniscus or crescent shape.

Restriction enzyme

A restriction enzyme (or restriction endonuclease) is an enzyme that cuts double-stranded or single stranded DNA at specific recognition nucleotide sequences known as restriction sites. Such enzymes, found in bacteria and archaea, are thought to have evolved to provide a defense mechanism against invading viruses. Inside a bacterial host, the restriction enzymes selectively cut up foreign DNA in a process called restriction; host DNA is methylated by a modification enzyme (a methylase) to protect it from the restriction enzyme’s activity. Collectively, these two processes form the restriction modification system. To cut the DNA, a restriction enzyme makes two incisions, once through each sugar-phosphate backbone (i.e. each strand) of the DNA double helix.

After isolating the first restriction enzyme, HindII, in 1970, and the subsequent discovery and characterization of numerous restriction endonucleases, the 1978 Nobel Prize for Physiology or Medicine was awarded to Daniel Nathans, Werner Arber, and Hamilton O. Smith. Their discovery led to the development of recombinant DNA technology that allowed, for example, the large scale production of human insulin for diabetics using E. coli bacteria. Over 3000 restriction enzymes have been studied in detail, and more than 600 of these are available commercially and are routinely used for DNA modification and manipulation in laboratories

Southern blot

A Southern blot is a method routinely used in molecular biology for detection of a specific DNA sequence in DNA samples. Southern blotting combines transfer of electrophoresis-separated DNA fragments to a filter membrane and subsequent fragment detection by probe hybridization. The method is named after its inventor, the British biologist Edwin Southern.[1] Other blotting methods (i.e., western blot, northern blot, eastern blot, southwestern blot) that employ similar principles, but using RNA or protein, have later been named in reference to Edwin Southern's name. As the technique was eponymously named, Southern blot should be capitalized as is required for proper nouns, whereas names for other blotting methods should not.

Gel electrophoresis

Gel electrophoresis is one of the principal tools of molecular biology. The basic principle is that DNA, RNA, and proteins can all be separated by means of an electric field. In agarose gel electrophoresis, DNA and RNA can be separated on the basis of size by running the DNA through an agarose gel. Proteins can be separated on the basis of size by using an SDS-PAGE gel, or on the basis of size and their electric charge by using what is known as a 2D gel electrophoresis

Polymerase chain reaction

The polymerase chain reaction is an extremely versatile technique for copying DNA. In brief, PCR allows a single DNA sequence to be copied (millions of times), or altered in predetermined ways. For example, PCR can be used to introduce restriction enzyme sites, or to mutate (change) particular bases of DNA, the latter is a method referred to as "Quick change". PCR can also be used to determine whether a particular DNA fragment is found in a cDNA library. PCR has many variations, like reverse transcription PCR (RT-PCR) for amplification of RNA, and, more recently, real-time PCR (QPCR) which allow for quantitative measurement of DNA or RNA molecules.

Sunday, May 2, 2010

Genetic counseling

Genetic counseling or counselling (UK English) is the process by which patients or relatives, at risk of an inherited disorder, are advised of the consequences and nature of the disorder, the probability of developing or transmitting it, and the options open to them in management and family planning in order to prevent, avoid or ameliorate it. This complex process can be seen from diagnostic (the actual estimation of risk) and supportive aspects.

Medical genetics

Medical Genetics is the specialty of medicine that involves the diagnosis and management of hereditary disorders. Medical genetics differs from Human genetics in that human genetics is a field of scientific research that may or may not apply to medicine, but medical genetics refers to the application of genetics to medical care. For example, research on the causes and inheritance of genetic disorders would be considered within both human genetics and medical genetics, while the diagnosis, management, and counseling of individuals with genetic disorders would be considered part of medical genetics. In contrast, the study of typically non-medical phenotypes such as the genetics of eye color would be considered part of human genetics, but not necessarily relevant to medical genetics (except in situations such as albinism). Genetic medicine is a newer term for medical genetics and incorporates areas such as gene therapy, personalized medicine, and the rapidly emerging new medical specialty, predictive Medicine.

Developmental biology

Developmental biology is the study of the process by which organisms grow and develop. Modern developmental biology studies the genetic control of cell growth, differentiation and "morphogenesis," which is the process that gives rise to tissues, organs and anatomy.

Population genetics

Population genetics is the study of allele frequency distribution and change under the influence of the four main evolutionary processes: natural selection, genetic drift, mutation and gene flow. It also takes into account the factors of population subdivision and population structure. It attempts to explain such phenomena as adaptation and speciation.

Population genetics was a vital ingredient in the emergence of the modern evolutionary synthesis. Its primary founders were Sewall Wright, J. B. S. Haldane and R. A. Fisher, who also laid the foundations for the related discipline of quantitative genetics.

Genomics

Genomics is the study of the genomes of organisms. The field includes intensive efforts to determine the entire DNA sequence of organisms and fine-scale genetic mapping efforts. The field also includes studies of intragenomic phenomena such as heterosis, epistasis, pleiotropy and other interactions between loci and alleles within the genome. In contrast, the investigation of the roles and functions of single genes is a primary focus of molecular biology or genetics and is a common topic of modern medical and biological research. Research of single genes does not fall into the definition of genomics unless the aim of this genetic, pathway, and functional information analysis is to elucidate its effect on, place in, and response to the entire genome's networks.

Molecular biology

Molecular biology is the study of biology at a molecular level. The field overlaps with other areas of biology and chemistry, particularly genetics and biochemistry. Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interactions between DNA, RNA and protein biosynthesis as well as learning how these interactions are regulated.

Molecular genetics

Molecular genetics is the field of biology that studies the structure and function of genes at a molecular level. The field studies how the genes are transferred from generation to generation. Molecular genetics employs the methods of genetics and molecular biology. It is so-called to differentiate it from other sub fields of genetics such as ecological genetics and population genetics. An important area within molecular genetics is the use of molecular information to determine the patterns of descent, and therefore the correct scientific classification of organisms: this is called molecular systematics.

Cytogenetics

Cytogenetics is a branch of genetics that is concerned with the study of the structure and function of the cell, especially the chromosomes. It includes routine analysis of G-Banded chromosomes, other cytogenetic banding techniques, as well as molecular cytogenetics such as fluorescent in situ hybridization (FISH) and comparative genomic hybridization (CGH).

Classical genetics

Classical genetics consists of the techniques and methodologies of genetics that predate the advent of molecular biology. A key discovery of classical genetics in eukaryotes was genetic linkage. The observation that some genes do not segregate independently at meiosis, broke the laws of Mendelian inheritance, and provided science with a way to map characteristics to a location on the chromosomes. Linkage maps are still used today, especially in breeding for plant improvement.

After the discovery of the genetic code and such tools of cloning as restriction enzymes, the avenues of investigation open to geneticists were greatly broadened. Some classical genetic ideas have been supplanted with the mechanistic understanding brought by molecular discoveries, but many remain intact and in use. Classical genetics is often contrasted with reverse genetics, and aspects of molecular biology are sometimes referred to as molecular genetics.

Human

Humans commonly refers to the species Homo sapiens (Latin: "wise man" or "knowing man"), the only extant member of the Homo genus of bipedal primates in Hominidae, the great ape family. However, in some cases the term is used to refer to any member of the genus Homo.

Humans have a highly developed brain, capable of abstract reasoning, language, introspection, and problem solving. This mental capability, combined with an erect body carriage that frees the hands for manipulating objects, has allowed humans to make far greater use of tools than any other species. Mitochondrial DNA and fossil evidence indicates that modern humans originated in Africa about 200,000 years ago. With individuals widespread in every continent except Antarctica, humans are a cosmopolitan species. The population of humans was 6.8 billion in November 2009

Thursday, April 1, 2010

Protein

Proteins (also known as polypeptides) are organic compounds made of amino acids arranged in a linear chain and folded into a globular form. The amino acids in a polymer are joined together by the peptide bonds between the carboxyl and amino groups of adjacent amino acid residues. The sequence of amino acids in a protein is defined by the sequence of a gene, which is encoded in the genetic code. In general, the genetic code specifies 20 standard amino acids; however, in certain organisms the genetic code can include selenocysteine—and in certain archaea—pyrrolysine. Shortly after or even during synthesis, the residues in a protein are often chemically modified by post-translational modification, which alters the physical and chemical properties, folding, stability, activity, and ultimately, the function of the proteins. Proteins can also work together to achieve a particular function, and they often associate to form stable complexes

RNA

Ribonucleic acid (RNA) is a biologically important type of molecule that consists of a long chain of nucleotide units. Each nucleotide consists of a nitrogenous base, a ribose sugar, and a phosphate. RNA is very similar to DNA, but differs in a few important structural details: in the cell, RNA is usually single-stranded, while DNA is usually double-stranded; RNA nucleotides contain ribose while DNA contains deoxyribose (a type of ribose that lacks one oxygen atom); and RNA has the base uracil rather than thymine that is present in DNA. RNA is transcribed from DNA by enzymes called RNA polymerases and is generally further processed by other enzymes. RNA is central to protein synthesis. Here, a type of RNA called messenger RNA carries information from DNA to structures called ribosomes. These ribosomes are made from proteins and ribosomal RNAs, which come together to form a molecular machine that can read messenger RNAs and translate the information they carry into proteins. There are many RNAs with other roles – in particular regulating which genes are expressed, but also as the genomes of most viruses

DNA

Deoxyribonucleic acid (en-us-Deoxyribonucleic_acid.ogg /diˈɒksɪˈraɪboʊnuˈkliɪk ˈæsɪd/ ) (DNA) is a nucleic acid that contains the genetic instructions used in the development and functioning of all known living organisms and some viruses. The main role of DNA molecules is the long-term storage of information. DNA is often compared to a set of blueprints or a recipe, or a code, since it contains the instructions needed to construct other components of cells, such as proteins and RNA molecules. The DNA segments that carry this genetic information are called genes, but other DNA sequences have structural purposes, or are involved in regulating the use of this genetic information.

Chemically, DNA consists of two long polymers of simple units called nucleotides, with backbones made of sugars and phosphate groups joined by ester bonds. These two strands run in opposite directions to each other and are therefore anti-parallel. Attached to each sugar is one of four types of molecules called bases. It is the sequence of these four bases along the backbone that encodes information. This information is read using the genetic code, which specifies the sequence of the amino acids within proteins. The code is read by copying stretches of DNA into the related nucleic acid RNA, in a process called transcription.

Proteome

The proteome is the entire set of proteins expressed by a genome, cell, tissue or organism. More specifically, it is the set of expressed proteins in a given type of cells or an organism at a given time under defined conditions. The term is a portmanteau of proteins and genome.

The term has been applied to several different types of biological systems. A cellular proteome is the collection of proteins found in a particular cell type under a particular set of environmental conditions such as exposure to hormone stimulation. It can also be useful to consider an organism's complete proteome, which can be conceptualized as the complete set of proteins from all of the various cellular proteomes. This is very roughly the protein equivalent of the genome. The term "proteome" has also been used to refer to the collection of proteins in certain sub-cellular biological systems. For example, all of the proteins in a virus can be called a viral proteome.

The proteome is larger than the genome, especially in eukaryotes, in the sense that there are more proteins than genes. This is due to alternative splicing of genes and post-translational modifications like glycosylation or phosphorylation.

Tissue (biology)

Tissues are the cellular organizational level intermediate between cells and a complete organism. Hence, a tissue is an ensemble of cells, not necessarily identical, but from the same origin, that together carry out a specific function. Organs are then formed by the functional grouping together of multiple tissues.

The study of tissue is known as histology or, in connection with disease, histopathology.

The classical tools for studying tissues are the paraffin block in which tissue is embedded and then sectioned, the histological stain, and the optical microscope. In the last couple of decades, developments in electron microscopy, immunofluorescence, and the use of frozen tissue sections have enhanced the detail that can be observed in tissues. With these tools, the classical appearances of tissues can be examined in health and disease, enabling considerable refinement of clinical diagnosis and prognosis.

Mitochondrion

In cell biology, a mitochondrion (plural mitochondria) is a membrane-enclosed organelle found in most eukaryotic cells. These organelles range from 0.5 to 10 micrometers (μm) in diameter. Mitochondria are sometimes described as "cellular power plants" because they generate most of the cell's supply of adenosine triphosphate (ATP), used as a source of chemical energy. In addition to supplying cellular energy, mitochondria are involved in a range of other processes, such as signaling, cellular differentiation, cell death, as well as the control of the cell cycle and cell growth. Mitochondria have been implicated in several human diseases, including mitochondrial disorders and cardiac dysfunction, and may play a role in the aging process. The word mitochondrion comes from the Greek μίτος or mitos, thread + χονδρίον or chondrion, granule. They are the powerhouses of the cell.

Organism

In biology, an organism is any living system (such as animal, plant, fungus, or micro-organism). In at least some form, all organisms are capable of response to stimuli, reproduction, growth and development, and maintenance of homeostasis as a stable whole. An organism may either be unicellular (single-celled) or be composed of, as in humans, many billions of cells grouped into specialized tissues and organs. The term multicellular (many-celled) describes any organism made up of more than one cell.

Biological classification

Biological classification, or scientific classification in biology, is a method by which biologists group and categorize organisms by biological type, such as genus or species. Biological classification is a form of scientific taxonomy, but should be distinguished from folk taxonomy, which lacks scientific basis. Modern biological classification has its root in the work of Carolus Linnaeus, who grouped species according to shared physical characteristics. These groupings have since been revised to improve consistency with the Darwinian principle of common descent. Molecular phylogenetics, which uses DNA sequences as data, has driven many recent revisions and is likely to continue to do so. Biological classification belongs to the science of biological systematics.

Population genetics

Population genetics is the study of allele frequency distribution and change under the influence of the four main evolutionary processes: natural selection, genetic drift, mutation and gene flow. It also takes into account the factors of population subdivision and population structure. It attempts to explain such phenomena as adaptation and speciation.

Population genetics was a vital ingredient in the emergence of the modern evolutionary synthesis. Its primary founders were Sewall Wright, J. B. S. Haldane and R. A. Fisher, who also laid the foundations for the related discipline of quantitative genetics.

Molecular genetics

Molecular genetics is the field of biology that studies the structure and function of genes at a molecular level. The field studies how the genes are transferred from generation to generation. Molecular genetics employs the methods of genetics and molecular biology. It is so-called to differentiate it from other sub fields of genetics such as ecological genetics and population genetics. An important area within molecular genetics is the use of molecular information to determine the patterns of descent, and therefore the correct scientific classification of organisms: this is called molecular systematics.

Along with determining the pattern of descendants, molecular genetics helps in understanding genetic mutations that can cause certain types of diseases. Through utilizing the methods of genetics and molecular biology, molecular genetics discovers the reasons why traits are carried on and how and why some may mutate

Cytogenetics

Cytogenetics is a branch of genetics that is concerned with the study of the structure and function of the cell, especially the chromosomes. It includes routine analysis of G-Banded chromosomes, other cytogenetic banding techniques, as well as molecular cytogenetics such as fluorescent in situ hybridization (FISH) and comparative genomic hybridization (CGH)

Classical genetics

Classical genetics consists of the techniques and methodologies of genetics that predate the advent of molecular biology. A key discovery of classical genetics in eukaryotes was genetic linkage. The observation that some genes do not segregate independently at meiosis, broke the laws of Mendelian inheritance, and provided science with a way to map characteristics to a location on the chromosomes. Linkage maps are still used today, especially in breeding for plant improvement.

After the discovery of the genetic code and such tools of cloning as restriction enzymes, the avenues of investigation open to geneticists were greatly broadened. Some classical genetic ideas have been supplanted with the mechanistic understanding brought by molecular discoveries, but many remain intact and in use. Classical genetics is often contrasted with reverse genetics, and aspects of molecular biology are sometimes referred to as molecular genetics.

Human

Humans commonly refers to the species Homo sapiens (Latin: "wise man" or "knowing man"), the only extant member of the Homo genus of bipedal primates in Hominidae, the great ape family. However, in some cases the term is used to refer to any member of the genus Homo.

Humans have a highly developed brain, capable of abstract reasoning, language, introspection, and problem solving. This mental capability, combined with an erect body carriage that frees the hands for manipulating objects, has allowed humans to make far greater use of tools than any other species. Mitochondrial DNA and fossil evidence indicates that modern humans originated in Africa about 200,000 years ago. With individuals widespread in every continent except Antarctica, humans are a cosmopolitan species. The population of humans was 6.8 billion in November 2009