Thursday, March 27, 2008

Applications of Human Genetic Engineering

Curing medical conditions
When treating problems that arise from genetic disorder, one solution is gene therapy. A genetic disorder is a situation where some genes are missing or faulty. When this happens, genes may be expressed in unfavorable ways or not at all, and this generally leads to further complications.
The idea of gene therapy is that a non-pathogenic virus or other delivery system can be used to insert a piece of DNA--a good copy of the gene--into cells of the living individual. The modified cells would divide as normal and each division would produce cells that express the desired trait. The result would be that he/she would then have the ability to express the trait that was previously absent at least partially. This form of genetic engineering could help alleviate many problems, such as diabetes, cystic fibrosis, or other genetic diseases.

Human enhancement
Main article: Human enhancement
The potential of genetic engineering to cure medical conditions opens the question of exactly what such a condition is. Some view aging and death as medical conditions and therefore potential targets for engineering solutions. They see human genetic engineering potentially as a key tool in this (see life extension). The difference between cure and enhancement from this perspective is merely one of degree. Theoretically genetic engineering could be used to drastically change people's genomes, which could enable people to regrow limbs and other organs, perhaps even extremely complex ones such as the spine. It could also be used to make people stronger, faster, smarter, or to increase the capacity of the lungs, among other things. If a gene exists in nature, it could be brought over to a human cell. In this view, there is no qualitative difference (only a quantitative one) between, for instance, a genetic intervention to cure muscular dystrophy, and a genetic intervention to improve muscle function even when those muscles are functioning at or around the human average (since there is also an average muscle function for those with a particular type of dystrophy, which the treatment would improve upon).
Others feel that there is an important distinction between using genetic technologies to treat those who are suffering and to make those who are already healthy superior to the average. There is widespread agreement that germline engineering should not currently be allowed for either therapeutic and enhancement applications, as evidenced by a recent report by the American Association for the Advancement of Science. .Though theory and speculation suggest that genetic engineering could be used to make people stronger, faster, smarter, or to increase lung capacity, the AAAS report finds that there is little evidence that this can currently be done without very unsafe and therefore unethical human experiments. Because different cells have different tasks, changing one cell to do a different job will not only affect that one task, it can affect many others too

No comments: